
Calculate the standard error from the effect size and p-value
se.from.p.RdThis function calculates the standard error of an effect size provided the exact p-value and (continuous) effect size according to the formula by Altman and Bland (2011).
Arguments
- effect.size
Numeric vector or single number. The effect size, such as the standardized mean difference, Hedges' g or other continuous effect size.
- p
Numeric vector or single number. The exact p-value corresponding to the effect size.
- N
Numeric vector or single number. The total number of samples used to calculate the effect size/p-value.
- effect.size.type
The type of effect sizes provided in
effect.size. For effect sizes based on differences (e.g., mean differences), this parameter has to be set to"difference". For effect sizes based on ratios (e.g., risk ratio, odds ratio), this parameter has to be set to"ratio".- calculate.g
Logical. Calculates the standardized mean difference corrected for small sample bias (Hedges' g).
FALSEby default.
Value
A dataframe containing the following columns:
(log)EffectSize: The input effect size. Log-transformed ifeffect.size.typeis"ratio".Hedges.g: The calculated Hedges' g values (only ifcalculate.g=TRUE).(log)StandardError: The standard error (SE) for the effect size. Log-transformed ifeffect.size.typeis"ratio".(log)LLCIand(log)ULCI: The lower and upper 95% confidence interval of the effect size. Log-transformed ifeffect.size.type="ratio".
Details
This function calculates the standard error, standard deviation and 95% confidence interval of an effect size given the effect size and exact p-value. The function can be used for:
effect sizes based on differences (e.g., mean differences) by setting
effect.size.typeto"difference", oreffect sizes based on ratios (e.g. risk ratios, odds ratios or hazard ratios) by setting
effect.size.typeto"ratio". When ratios are used, the function returns the log-transformed effect sizes, standard error, standard deviation and confidence interval, which can be used for meta-analytic pooling using themetagenfunction, along with the original effect size and confidence interval.
References
Altman D.G. & Bland J.M. (2011) How to obtain the confidence interval of a p value. BMJ 343:d2090.
Examples
# Example 1: one single effect size
se.from.p(effect.size = 0.71, p = 0.013, N = 75,
effect.size.type= "difference", calculate.g = TRUE)
#> Hedges.g StandardError StandardDeviation LLCI ULCI
#> 1 0.7026804 0.2830974 2.451696 0.1478196 1.257541
# Example 2: vector of effect sizes (Odds Ratio)
effect.size = c(0.91, 1.01, 0.72, 0.43)
p = c(0.05, 0.031, 0.001, 0.09)
N = c(120, 86, 450, 123)
se.from.p(effect.size = effect.size, p = p, N = N,
effect.size.type = "ratio")
#> logEffectSize logStandardError logStandardDeviation logLLCI
#> 1 -0.094310679 0.048200284 0.52800765 -0.1887814995
#> 2 0.009950331 0.004620291 0.04284681 0.0008947275
#> 3 -0.328504067 0.099448976 2.10963136 -0.5234204779
#> 4 -0.843970070 0.498293938 5.52634711 -1.8206082430
#> logULCI EffectSize LLCI ULCI
#> 1 0.0001601406 0.91 0.8279674 1.0001602
#> 2 0.0190059342 1.01 1.0008951 1.0191877
#> 3 -0.1335876560 0.72 0.5924905 0.8749508
#> 4 0.1326681024 0.43 0.1619272 1.1418710