mlm.variance.distribution.Rd
This function calculates values of \(I^2\) and the variance distribution for multilevel meta-analysis
models fitted with rma.mv
.
mlm.variance.distribution(x)
x | An object of class |
---|
Returns a data frame containing the results. A plot summarizing the variance distribution and \(I^2\) values can be generated using plot
.
This function estimates the distribution of variance in a three-level meta-analysis
model (fitted with the rma.mv
function). The share of variance attributable to
sampling error, within and between-cluster heterogeneity is calculated,
and an estimate of \(I^2\) (total and for Level 2 and Level 3) is provided. The function uses the formula by
Cheung (2014) to estimate the variance proportions attributable to each model component and to derive the \(I^2\) estimates.
Harrer, M., Cuijpers, P., Furukawa, T.A, & Ebert, D. D. (2019). Doing Meta-Analysis in R: A Hands-on Guide. DOI: 10.5281/zenodo.2551803. Chapter 12.
Cheung, M. W. L. (2014). Modeling dependent effect sizes with three-level meta-analyses: a structural equation modeling approach. Psychological Methods, 19(2), 211.
# Use dat.konstantopoulos2011 from the "metafor" package library(metafor) # Build Multilevel Model (Three Levels) m = rma.mv(yi, vi, random = ~ 1 | district/school, data=dat.konstantopoulos2011) # Calculate Variance Distribution mlm.variance.distribution(m)#> % of total variance I2 #> Level 1 4.812686 --- #> Level 2 31.862476 31.86 #> Level 3 63.324838 63.32 #> Total I2: 95.19%# Use alias 'var.comp' and 'Chernobyl' data set data("Chernobyl") m2 = rma.mv(yi = z, V = var.z, data = Chernobyl, random = ~ 1 | author/es.id) res = var.comp(m2) # Print results res#> % of total variance I2 #> Level 1 1.254966 --- #> Level 2 39.525499 39.53 #> Level 3 59.219534 59.22 #> Total I2: 98.75%